

DEMAPLAN®

مدیریت و برنامه‌ریزی تقاضا محور آب

Demand-oriented management and
planning of water infrastructures

Table of Contents

2	Towards demand-oriented water management
WHAT DEMAPLAN® CAN DO FOR YOU	
5	What DEMAPLAN® can do for you
14	Applying DEMAPLAN®
CASE STUDY KASHAN	
18	Case Study Kashan – Bringing DEMAPLAN® into practice
22	Results of the Kashan Case Study
28	What advice did DEMAPLAN® give the experts in Kashan?
30	Epilogue

فهرست مطالب

2	بسیاری مدیریت تقاضا محور آب
کاربرد DEMAPLAN® برای شرکت‌های آب و فاضلاب	
5	کاربرد DEMAPLAN® برای شرکت‌های آب و فاضلاب
14	اجرای DEMAPLAN®
مطالعه موردی کاشان	
18	مطالعه موردی کاشان- اجرایی کردن طرح DEMAPLAN®
22	نتایج مطالعه موردی شهر کاشان
28	کارشناسان در کاشان ارائه داد؟ DEMAPLAN® چه رهنمودهایی را به سخن پایانی

Towards demand-oriented water management

Iran is a country with regionally heterogeneous climatic conditions, water resources availability and cultural backgrounds. Water consumption patterns vary accordingly. Therefore it's all the more important to develop regionally adopted water consumption strategies.

Dealing successfully with future challenges

As a water supply company, you constantly face the question whether you should meet the growing demand by developing water resources or whether you should rather develop management strategies that adjust your customers' demand to an appropriate consumption pattern.

A reorientation towards demand-oriented strategies may, at first sight, require more effort; it is common sense, though, that successful implementation of demand-responsive water consumption strategies is sustainable and, especially for you as a company, the most economical choice. Therefore, when implementing new strategies, it is worth focusing on business options that are successful in the long run and applying efficient customer monitoring and consumption management in your region.

بسوی مدیریت تقاضا محور آب

کشور ایران با تنوع آب و هوازی، منابع آب در دسترس و همچنین پیشینه‌های فرهنگی گوناگون است که با توجه به این شرایط الگوی مصرف آب متغیر می‌باشد. بنابراین تدوین راهبردهای مدیریت مصرف آب مناسب با هر منطقه، از اهمیت بسزایی برخوردار است.

گسترش شهرها – کاهش منابع آب
Growing cities – shrinking water resources

عملکرد موفق در مواجه با چالش‌های پیش رو

به عنوان راهکارهای اساسی در برابر افزایش تقاضا، شرکت‌های آب و فاضلاب می‌توانند توسعه منابع آب را در دستور کار قرار داده و یا راهبردهای مدیریتی جهت تنظیم تقاضای مشترکین به منظور دستیابی به الگوی مصرف مناسب را توسعه دهند.

جهت‌گیری مجدد در راستای راهبردهای تقاضا محور، ممکن است در ابتدا مستلزم تلاش مضاعف باشد؛ با این وجود پیاده‌سازی موفق راهبردهای مصرف تقاضا محور به عنوان راهکار توسعه پایدار، اقتصادی‌ترین گزینه برای شرکت‌های آب و فاضلاب می‌باشد. بنابراین هنگام اجرای راهبردهای جدید می‌بایست بر روش‌های سوداور در دراز مدت، نظارت بر مشتریان و مدیریت مصرف در منطقه، توجه نمود.

Understanding consumption patterns

While water suppliers know their own infrastructures well, they usually have little detailed information about the consumption patterns of their customers. Often too little is known on the reasons for water consumption changes at different times. The lack of information on customers' consumption patterns usually includes lacking information on their sanitary technology and thus possible water saving potentials for the water suppliers themselves. This situation makes it almost impossible, also for your company, to develop feasible management strategies and to optimize your infrastructure.

Experience from countries like Germany shows that future-oriented companies also ask about forms of water use, e.g. if grey or black water is produced, or where wastewater is available that can be reused. All this needs to be made measurable in the future. In order to remain agile and competitive in the long run, you do not only need to make your business activities more sustainable but also more efficient.

DEMAPLAN® – increasing your company's success

As with any restructuring, a shift towards demand-oriented consumption management strategies leads to the question of effectiveness. No matter if your technical facilities are improved or your customers' devices are going to be updated; the ultimate question for you as plant managers is: How will the company use its financial resources to cope with future tasks and without threatening day-to-day business?

The answer to this question is DEMAPLAN®.

کارآمدسازی تجهیزات فنی
Making your technical facilities more efficient

شناخت الگوی مصرف

شرکت‌های آب و فاضلاب با وجود شناخت کافی از تأسیسات زیربنایی آب، اغلب اطلاعات محدودی در مورد الگوی مصرف مشترکین و دلایل نوasanات مصرف در زمان‌های مختلف دارند. کمود اطلاعات در خصوص الگوی مصرف مشترکین، نشأت گرفته از اطلاعات ناقص دریافتی از تجهیزات بهداشتی بوده و در نتیجه ظرفیت‌های ممکن صرفه‌جویی آب قابل شناسایی نمی‌باشد. این موضوع شرایط را برای شرکت‌های آب و فاضلاب به منظور توسعه راهبردهای مدیریتی و بهینه‌سازی زیرساخت‌ها، تقریباً غیر ممکن می‌سازد.

تجربیات کشورهایی نظیر آلمان بیانگر این است که شرکت‌های آینده محور نیز در پی شناسایی نحوه مصرف آب می‌باشند، از جمله اینکه مصارف آب منجر به تولید فاضلاب (آب خاکستری و آب سیاه) شده، یا در مناطقی که فاضلاب در دسترس است امکان استفاده مجدد از آن فراهم شود. تمامی این موارد می‌بایست در آینده قابل اندازه‌گیری باشند. به منظور حفظ انعطاف‌پذیری و رقابت‌پذیری در بلند مدت، علاوه بر فعالیت‌های پایدار، شرکت‌ها می‌بایست عملکردی کارآمدتر داشته باشند.

– توسعه موفقیت در شرکت‌های آب و فاضلاب

با تغییر راهبردها به سمت مدیریت مصرف تقاضا محور، موضوع اثربخشی مطرح می‌شود. بدون در نظر گرفتن بهبود تأسیسات یا به روز رسانی تجهیزات مشترکین، پرسش نهایی برای مدیران، چگونگی برنامه‌ریزی منابع مالی در طرح‌های آتی، بدون ایجاد خلل در فعالیت‌های جاری شرکت می‌باشد.

پاسخ این پرسش DEMAPLAN® است.

کاربرد **DEMAPLAN®** برای
شرکت‌های آب و فاضلاب

What **DEMAPLAN®**
can do for you

What DEMAPLAN® can do for you

DEMAPLAN® is a conglomerate of services made of software tools and technologies that will enable you to analyse the water consumption patterns of your customers in your region as detailed as never before and to make your company profitable and effective in the long run.

DEMAPLAN® will allow you to design targeted management strategies for specific customer profiles and thus guarantee a locally adjusted supply which is an advantage for you and all relevant stakeholders.

DEMAPLAN® provides detailed information on, for example, your customers' water consumption patterns in your service area as monthly or diurnal variations as well as by time and form of water consumption. In addition you receive information on the current state of the sanitary technology in your customers' households.

DEMAPLAN® provides the necessary database for developing a demand-oriented consumption management strategy.

کاربرد DEMAPLAN® برای شرکت‌های آب و فاضلاب

مجموعه ای از خدمات فنی و ابزارهای DEMAPLAN® نرم‌افزاری است که در صورت استفاده از آن تجزیه و تحلیل الگوی مصرفی مشترکین با جزئیات کامل و ارائه خدمات مؤثر و سودآور شرکت‌های آب و فاضلاب در دراز مدت، امکان پذیر می‌باشد.

امکان ارائه راهبردهای مدیریتی هدفمند برای مشترکین ویژه را مهیا نموده و در نتیجه توانایی طراحی سیستم تأمین مناسب با شرایط حاکم را مقدور می‌سازد که برای شرکت‌های آب و فاضلاب و ذینفعان مربوطه بسیار سودمند خواهد بود.

DEMAPLAN® قادر به ارائه اطلاعات دقیق و با جزئیات در خصوص الگوی مصرف آب مشترکین تحت پوشش به صورت روزانه و یا ماهانه، همچنین بر اساس زمان و نوع مصرف و وضعیت کنونی تجهیزات بهداشتی منازل مشترکین می‌باشد.

بدین ترتیب DEMAPLAN®، اطلاعات ضروری و پایه‌ای را جهت تدوین راهبرد مدیریت مصرف تقاضا محور ارائه می‌نماید.

With DEMAPLAN® you are able to

- measure your customers' water consumption patterns
- compare your customers water consumption patterns
- visualize monthly or diurnal variations
- optimise your supply infrastructure

چه قابلیت‌هایی دارد؟ DEMAPLAN®

- سنجش الگوی مصرف آب مشترکین
- مقایسه الگوی مصرف آب مشترکین
- نمایش روند مصرف روزانه و یا ماهانه
- بهینه‌سازی تأسیسات زیربنایی آبرسانی

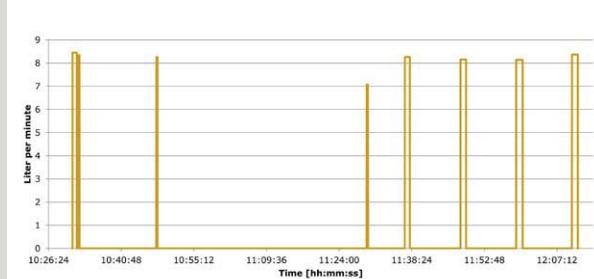
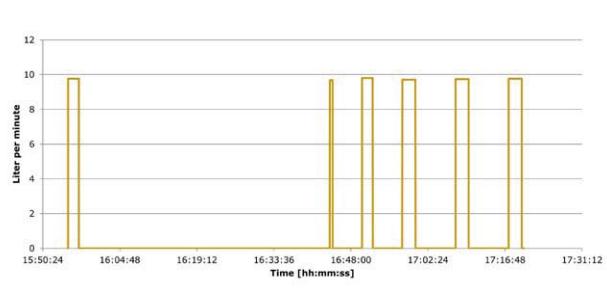
Water consumption patterns of customers as monthly or diurnal variations

DEMAPLAN® provides you with the main basic information on the existing water-using household appliances and with a list of the sanitary facilities of your customers' households. Maximum discharge and consumption volumes of single fittings and technical devices can be captured and measured individually. Via its integrated database DEMAPLAN® provides an immediate comparison of different household appliances and makes it possible to determine their efficiency.

Knowing the technical facilities of households helps to identify saving potentials of possible measures and to develop recommendations for prioritising technological optimisation like the introduction of modern fittings with small flow rates, dish washers, more efficient washing machines or energy saving air condition.

DEMAPLAN® can automatically generate a report out of the information gathered and forward it to your customers. As a supplement for more general information campaigns, DEMAPLAN® is a strong tool for targeted consumption management, because your customers are made aware of their own consumption patterns.

الگوی مصرف آب مشترکین به صورت روزانه یا ماهانه

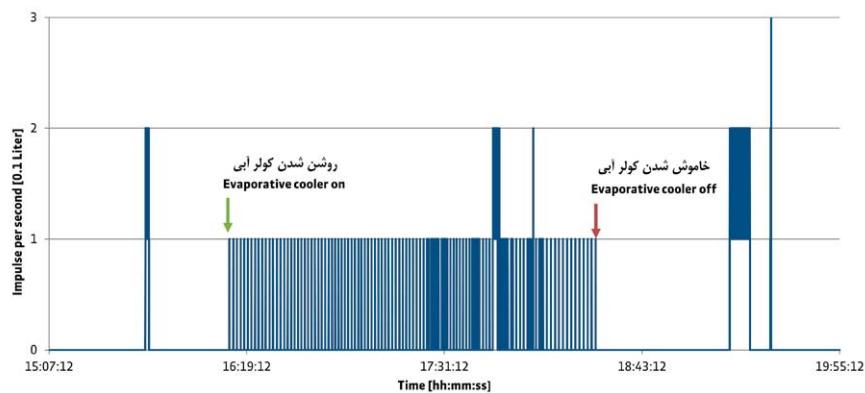


اطلاعات پایه‌ای مهمی در خصوص DEMAPLAN® چگونگی وضعیت تجهیزات و محل مصرف آب در منازل مشترکین را ارائه می‌نماید. همچنین اطلاعات مربوط به بیشترین میزان دبی و مقدار مصرف هریک از شیرهای آب و سایر اجزاء مصرف، بصورت مجزا قابل جمع‌آوری و اندازه‌گیری می‌باشد. DEMAPLAN® قادر است با استفاده از پایگاه اطلاعاتی جامعی که در اختیار دارد، تجهیزات منازل را از نظر مصرف با یکدیگر مقایسه کرده و میزان کارایی آنها بدین ترتیب قابل تعیین می‌باشد.

با شناسایی مشخصات فنی تجهیزات در منازل، ارائه راهکارهای صرفه‌جویانه امکان‌پذیر شده و توصیه‌های لازم در جهت اولویت‌بندی بهینه‌سازی فنی، قابل ارائه خواهد بود. به عنوان مثال بکارگیری شیرآلات مدرن با دبی کم، ماشین ظرفشویی، ماشینهای لباسشویی پر بازده یا کولرهای کم مصرف توصیه می‌شود.

DEMAPLAN® قادر خواهد بود نتایج و اطلاعات حاصله را به صورت خودکار در قالب گزارش در دسترس مشترکین قرار دهد. به منظور در اختیار گذاشتن اطلاعات تکمیلی، DEMAPLAN® ابزاری قدرتمند برای مدیریت مصرف هدفمند بوده که مشترکین را از نحوه رفتار مصرفی خود مطلع می‌سازد.

عوامل متعددی از جمله لوازم منزل، عادات و تعداد افراد خانواده، بر میزان مصرف آب تأثیرگذار می‌باشد.
Appliances, habits, size of household: Many different factors influence the amount of water used

Detailed Measuring Technology

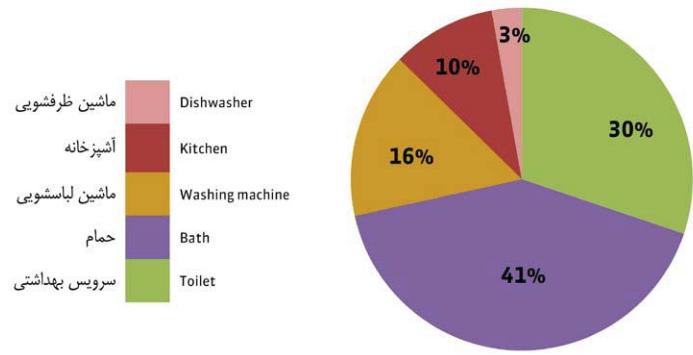

The charts compare in detail the use of two washing machines. On the left a more than 30 year-old washing machine with a water use of 116 litres and on the right a modern washing machine that needs 46 litres. Nowadays efficient washing machines need 50 litres per washing cycle for 5 to 7 kg of dry laundry on average.

Precise measuring technology allows you to identify the individual points of use in a household and to depict their consumption patterns. How much does a washing machine or air conditioning in a customer's household use, or how much water is used in the shower? These questions can be answered with DEMAPLAN®.

جزئیات فنی اندازه‌گیری

با استفاده از فن آوری اندازه‌گیری دقیق، نه تنها تمامی اجزاء مصرف در یک منزل شناسایی می‌شوند، بلکه الگوی مصرف هر کدام تعیین و نمایش داده خواهد شد. با استفاده از DEMAPLAN®، میزان مصرف ۱۱۶ لیتر و نمودار سمت راست مربوط به یک ماشین لباسشویی مدرن با میزان مصرف ۴۶ لیتر می‌باشد. مشترکین چقدر می‌باشد و یا اینکه چه میزان آب با هر بار استحمام مصرف می‌شود، قابل پاسخ‌گویی خواهد بود.

با استفاده از فن آوری اندازه‌گیری دقیق، نمودار سمت چپ بیانگر مصرف یک ماشین لباسشویی با کارکرد ۳۰ ساله و میزان مصرف ۱۱۶ لیتر و نمودار سمت راست مربوط به یک ماشین لباسشویی مدرن با میزان مصرف ۴۶ لیتر می‌باشد. امروزه ماشین‌های لباسشویی کم مصرف ۵ تا ۷ کیلویی (وزن لباس خشک)، به طور متوسط ۵۰ لیتر آب برای هر بار شست و شو مصرف می‌کنند.


High Resolution Flow Rate Protocols

The chart shows the water use of an air conditioning system in Iran. On a hot and dry summer day evaporative coolers that are wide-spread in Iran can use more than 300 litres of water per day if they run non-stop.

DEMPLAN® provides high resolution flow rate protocols at pulse per second. This way, even the lowest water use can be recorded. Like that, water consumption of the air conditioning system but also possible leaks in the customer's system can be identified.

ثبت دقیق میزان مصرف

نمودار بالا نمونه‌ای از میزان مصرف یک کولر آبی را در ایران نشان می‌دهد. در روزهای گرم و خشک تابستان، هر کولر آبی (به عنوان دستگاه سرمایش متدالو در ایران) با کارکرد تمام مدت در شبانه روز بیش از ۳۰۰ لیتر آب در روز مصرف می‌کند.

Distribution of Consumption

The diagram shows the consumption of a two-person household in a German city in winter. Of the average daily water use of around 80 litres per person, more than 40% (33 litres) are used for personal hygiene. The second biggest usage in the household is for flushing the toilet at 30% or 24 litres. The grey water that is produced in the bathroom

could replace the drinking water that is used for flushing the toilet.

Not only the amount of water used but also the point where the water is used can be identified and analysed using DEMAPLAN®. Combined with customer protocols, DEMAPLAN® can express the percentage share of used water in the household by different types of use.

آشامیدنی در فلاش تانک توالت مورد استفاده قرار گیرد.

به کمک DEMAPLAN® علاوه بر میزان مصرف آب، نوع و محل مصرف نیز قابل تعیین و تحلیل است. همچین با همکاری مشترکین، سهم آب مصرفی هر یک از اجزای مصرف بر اساس نوع مصرف آنها در یک خانوار، برحسب درصد قابل شناسایی می‌باشد.

نمودار دایره‌ای بالا مصرف یک خانوار دو نفره را در یکی از شهرهای آلمان در فصل زمستان نشان می‌دهد. از میزان آبی که به طور متوسط برابر ۸۰ لیتر به ازای هر نفر در روز مصرف شده است، ۴۰ درصد معادل ۳۳ لیتر مربوط به مصارف بهداشتی شخصی می‌باشد. بعد از این مصارف، بیشترین میزان مصرف را فلاش تانک سرویس بهداشتی با حدود ۳۰ درصد، معادل ۲۴ لیتر در روز به خود اختصاص داده است. آب خاکستری حاصله از حمام می‌تواند به جای آب

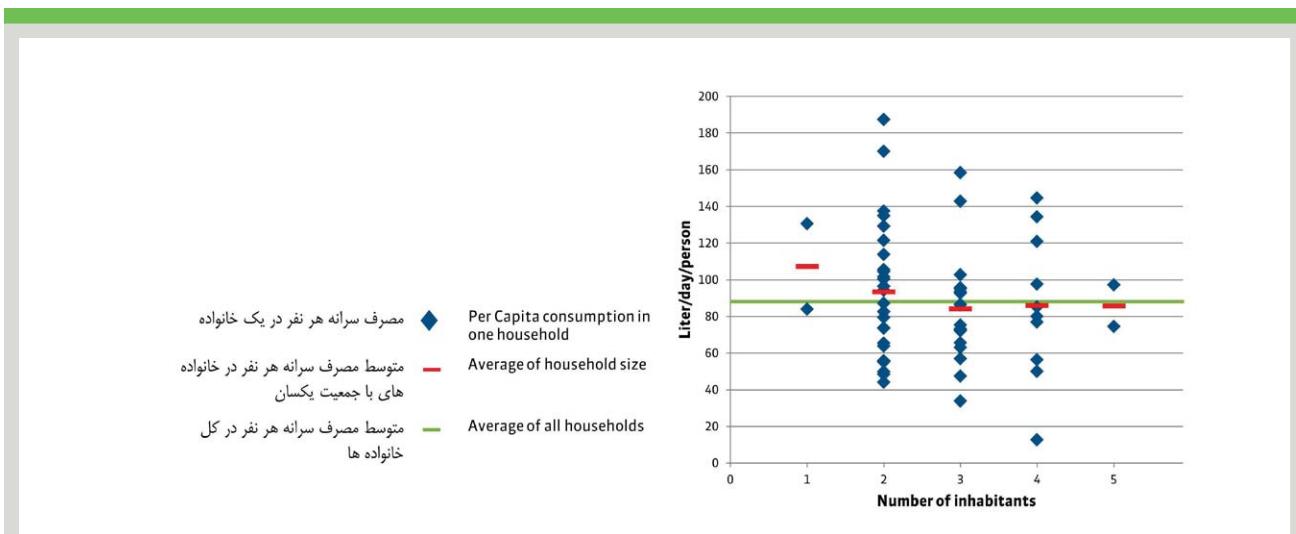
Water Consumption Patterns

The diurnal water consumption patterns of a household in Germany are expressed in the diagram above. It can be seen, for example, that especially personal hygiene and flushing the toilet, but also the use of the washing machine contribute heavily to the load peaks in the morning and evening. Due to the high resolution, the

quantity, characteristics and combinations of water use in the household can be analysed at different time intervals (month/day/hour/second). This provides greater insight into the consumption patterns of a customer and thus shows the potential for regulation.

نمودار میله‌ای بالا، الگوی مصرف سرانه یک خانوار آلمانی در ساعات مختلف شباهنگ روز را نشان می‌دهد. به عنوان مثال در این خانواده میزان مصرف حمام و سرویس بهداشتی، فلاش تانک توالت هر خانوار قابل ارزیابی می‌باشد. بدین ترتیب شناخت مناسبی از فیلترا مصرفی مشترکین حاصل شده و متعاقباً اعمال نظارت را میسر خواهد که باعث بالارفتن میزان مصرف در این ساعتها شده است. با توجه به دقت عمل بالای دستگاه‌های

Compare your customers' behaviour


DEMAPLAN® provides comprehensive statistical analysis and evaluation of the water use of your customers' households according to specific categories such as size of the household, time, season etc. By comparing the households saving potential becomes evident. By comparing the average water use according to the number of inhabitants can for example indicate which household sizes use the most water.

At the same time the range of your customers' water use in comparable household sizes can reveal water handling variations. In a two-person household for example, the average daily water use is around 95 liters per person while the consumption in some households doubles. If it is possible to detect the reasons for these anomalies, targeted measures for reducing water consumption can be developed and implemented.

مقایسه رفتاری مشترکین

DEMAPLAN® تحلیل جامع آماری و ارزیابی میزان مصرف مشترکین را بر اساس عوامل مختلف از جمله تعداد افراد خانوار، زمان مصرف، فصل انجام اندازه‌گیری‌ها وغیره، ارائه می‌دهد. بنابراین برای هر خانوارهای راهکارهایی مناسب چهت صرفه‌جویی بر اساس نوع مصرف هر خانوار پیشنهاد می‌گردد. بطور مثال می‌توان از طریق مقایسه متوسط مصرف خانوار براساس تعداد افراد، خانوارهای پر مصرف را مشخص نمود.

همچنین بررسی دامنه مصرف خانوارهای با جمیت یکسان، تفاوت در نوع مصرف را مشخص می‌نماید. بطور مثال در حالی که مصرف سرانه خانوار ۲ نفره‌ای ۹۵ لیتر در روز می‌باشد، این میزان می‌تواند در خانواده ۲ نفره دیگر دو برابر باشد. بنابراین در صورت تشخیص دلایل اختلاف مصرف دو مشترک، می‌توان تدابیر هدفمندی برای کاهش مصرف آب اتخاذ و اجرا نمود.

Per Capita Water Consumption in Households

The diagram above shows that the average daily water consumption of the analysed households is around 90 litres per person. With the increasing number of inhabitants the average daily water consumption decreases from around 110 litres per

person for people who live alone to 85 litres per person in households with 5 inhabitants. With this information you can develop prognoses concerning future water consumption depending on changing residential patterns.

نمودار بالا میزان مصرف سرانه خانوارهای بررسی شده در طرحی را نشان می‌دهد که به طور متوسط ۹۰ لیتر در روز می‌باشد. همان‌گونه که مشخص است میزان مصرف متوسط سرانه با افزایش تعداد اعضای خانوار کاهش می‌یابد. در حالی که مصرف متوسط سرانه در خانوار تک نفره ۱۱۰ لیتر در روز است، این میزان در خانواده‌های ۵ نفره به طور متوسط ۸۵ لیتر در روز می‌باشد. با استفاده از این اطلاعات، پیش‌بینی مصرف در آینده بر اساس تغییرات تعداد افراد خانوار نیز ممکن‌پذیر خواهد بود.

سرانه مصرف آب در خانوارها

Illustrating your customers' water consumption patterns as monthly or diurnal variations

DEMAPLAN® provides you with automatically processed data on the average daily water consumption in your supply area. These data are visualised as daily or monthly diagrams differentiated according to weekday and weekend and bank holidays.

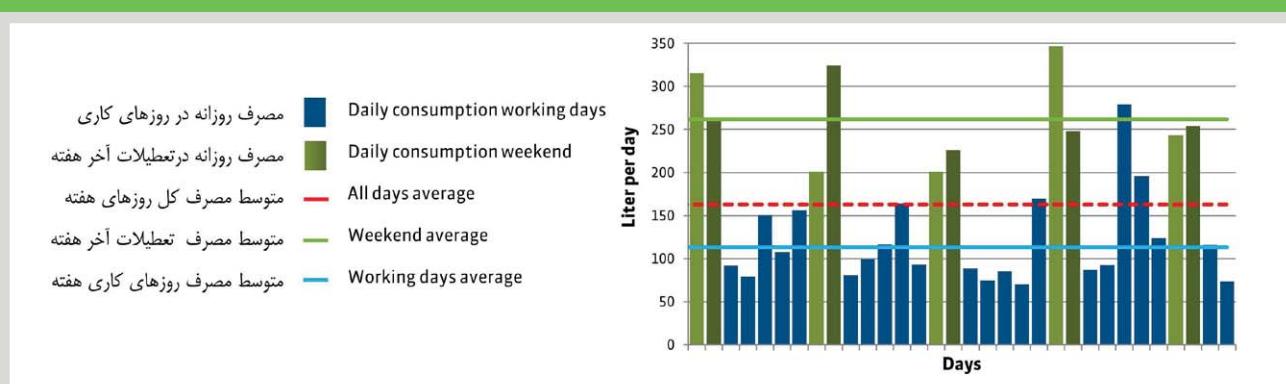
This is possible by installing appropriate water meters that continuously measure, save and transmit water use data to the DEMAPLAN® server. Such a system has already been developed by inter3 and successfully tested in Germany and Iran.

In the second stage, measures for further optimisation of plant operation and supply technology can be developed for analysing and comparing daily water use trends.

Nowadays water supply companies in Europe are thinking about economic incentives and technical infrastructures that encourage customers to reduce their consumption at peak times. For example, customers in some regions of Switzerland are automatically prevented from using their washing machines or filling their swimming pools at peak times through energy restrictions.

نمایش الگوی مصرفی مشترکین و تغییرات مصرف روزانه و ماهیانه

اطلاعات مربوط به مصرف روزانه مشترکین در منطقه تحت پوشش شرکت‌های آب و فاضلاب را بصورت خودکار جمع‌آوری کرده و در اختیار کارشناسان قرار می‌دهد. این اطلاعات پس از آماده‌سازی بصورت نمودارهای روزانه یا ماهیانه، میزان مصرف را در دو بسته زمانی شامل روزهای کاری هفته و تعطیلات آخر هفته و سایر تعطیلات نشان می‌دهند.


این امر با نصب کنترلرهای مناسب جهت اندازه‌گیری، ذخیره‌سازی و انتقال اطلاعات مصرف آب به سرور DEMAPLAN® امکان پذیر می‌باشد. این سیستم در حال حاضر توسط شرکت 3 inter تهیه شده و در کشورهای آلمان و ایران پیاده‌سازی و نصب شده است.

در مرحله دوم با مقایسه روند مصرف روزانه می‌توان راهکارهای جدید جهت بهینه‌سازی سیستم‌های تأمین و بهره‌برداری را ارائه نمود.

امروزه شرکت‌های تأمین آب در اروپا، در حال مطالعه در بازارهای مشوق‌های اقتصادی و تأسیسات زیربنایی هستند تا مشترکین را به مصرف کمتر در زمان حداکثر مصرف، ترغیب یا ملزم نمایند. در همین راستا بطور مثال در مناطقی از کشور سوییس، استفاده مشترکین از ماشین لباسشویی و یا پرکردن استخر در زمان حداکثر مصرف به صورت خودکار محدود شده است.

سالن فیلتراسیون شرکت آب Ludwigsfelde
Filter hall of the Ludwigsfelde waterworks

Monthly Variations

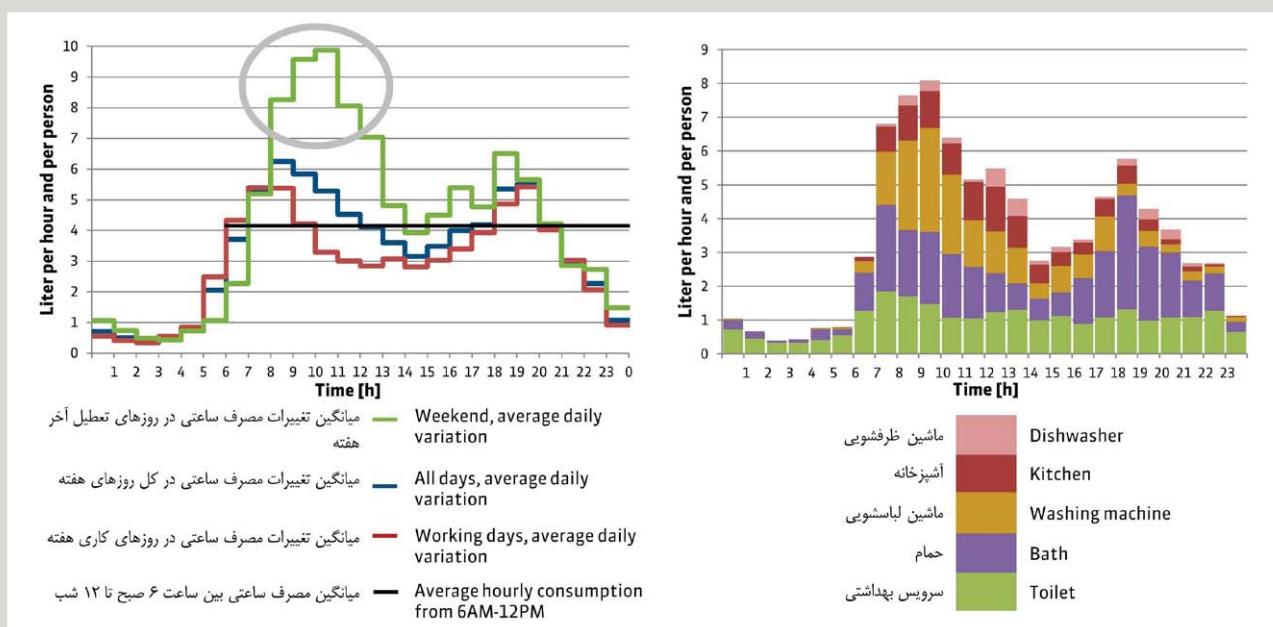

The diagram shows the daily water use trend of a test household in a German city over the period of one month. While the average daily water use in this household is 160 litres the household uses an average of 260 litres per day at the weekends. In contrast the water use of 110 litres during the week is below average. In order to balance the water

use the water supplier can influence the customer accordingly.

By avoiding fluctuations and balancing the water use the plants of the supply company work most efficiently. Using the automatically processed data (volumes used per day, average use per month, working days or weekends) possible efficiency benefits become apparent.

نوسانات ماهیانه

نمودار بالا روند مصرف روزانه را در طول یک ماه برای یک خانواده در شهری در آلمان نشان می‌دهد. در حالیکه میزان متوسط مصرف روزانه این خانوار ۱۶۰ لیتر می‌باشد، در تعطیلات آخر هفته میزان مصرف به ۲۶۰ لیتر افزایش می‌یابد. در مقابل، میزان مصرف طی روزهای کاری هفته مقدار ۱۱۰ لیتر و کمتر از متوسط مصرف می‌باشد. در این راستا شرکت‌های آب و فاضلاب می‌توانند با اثرگذاری بر مشترکین جهت متعادل‌سازی مصرف اقدام نمایند.


Diurnal Variations

You receive the average diurnal variations of your customers water use in a simple diagram. You can see for example at what time the water consumption spikes and what potential exists for balancing water use.

The diagram shows the average diurnal variations of a German test household with the typical two peaks: in the morning between 06:00 and 08:00 the consumption is 20 litres per hour and twice as high as the average daily consumption, in the evening between 18:00 and 20:00 the consumption remains 1.5 times the average.

نوسانات روزانه

در نمودار بالا میزان متوسط مصرف یک خانواده آلمانی به صورت نمودار میله‌ای نمایش داده شده است که دارای دو نقطه اوج مصرف می‌باشد. بررسی این نمودار نشان می‌دهد، حداقل مصرف این خانواده، بین ساعت ۶ تا ۸ صبح به میزان ۲۰ لیتر روز در ساعت ثبت شده است، که تقریباً بیش از دو برابر متوسط مصرف در طول شبانه روز می‌باشد و از طرفی دیگر، میزان مصرف بین ساعت ۱۸ تا ۲۰ عصر، $1/5$ برابر متوسط مصرف در شبانه روز است.

Understanding the Reasons

The average diurnal variations of a small German city (above left), clearly shows a peak on weekend mornings. However, only through additional measurements can water consumption patterns be broken down into individual consumption forms and the reasons for these peaks become known.

The diurnal water consumption patterns measured in all households (above right) shows which type of use occurs at what time and thus allows us to analyse the reasons for the peak. This example of a German city shows that washing machines are used mainly in the mornings at weekends.

شناخت دلایل
بررسی متوسط نوسانات مصرف ساعتی در شکل سمت راست، نمودار الگوی مصرف هر نفر (نمودار سمت چپ) در شهری کوچک در آلمان، اوج مصرف را طی ساعت صبح گاهی تقطیلات آخر هفته نشان می‌دهد. دلایل اوج مصرف با اندازه‌گیری‌های پیشرفته‌تر و تفکیک مصارف ساعتی به اجزای مصرف، قابل شناسایی می‌باشد.

در شکل سمت راست، نمودار الگوی مصرف حاصل از مطالعه کل مصرف روزانه خانوارهای شرکت کننده در یک طرح، نشان داده شده است. این نمودار بیانگر میزان مصارف مختلف در هر ساعت از شبانه روز می‌باشد. بنابراین با بررسی این نمودار، امکان شناسایی دلایل افزایش مصرف مقدور می‌باشد. در مثال ذکر شده، بررسی ها نشان می‌دهد که حداکثر مصرف در ساعت قبل از ظهر آخر هفته به دلیل استفاده گسترده از ماشین لباسشویی در این بازه زمانی می‌باشد.

تأسیسات شبکه توزیع آب در شرکت Berlin Tegel Water distributor at the Berlin Tegel waterworks

Optimising supply infrastructure

You can optimise your supply infrastructure by comparing water use during different daytimes and adjusting peaks and average usage.

DEMAPLAN® automatically shows you the monthly and diurnal water use variations of your customers. Visualising the water consumption during weekdays or at the weekend provides you with knowledge of your behaviour during weekdays or holidays, which are often very different.

Avoiding peaks can help you optimise the plant utilisation or energy consumption of your technical assets. With this knowledge you can develop targeted information campaigns and measures to balance consumption.

بهینه‌سازی تأسیسات زیربنایی تأمین آب

با مقایسه مصرف آب در ساعت‌های مختلف شباهه روز، امکان تطبیق حداقل مصرف با میزان متوسط مصرف فراهم شده و بدین ترتیب گامی در جهت بهبود وضعیت تأسیسات زیربنایی تأمین آب برداشته می‌شود.

DEMAPLAN® قادر است به صورت خودکار میزان مصرف متوسط روزانه هر مشترک را محاسبه نماید. بررسی توزیع مصرف هفتگی و یا تعطیلات آخر هفته، این امکان را برای شرکت‌های آب و فاضلاب فراهم می‌آورد تا شناخت مناسب‌تری از وضعیت مصرف مشترکین در روزهای عادی هفته و در تعطیلات آخر هفته که معمولاً بسیار متفاوت می‌باشد، حاصل شود.

محدود کردن وقوع نوسانات مصرف می‌تواند در بهبود بهره‌برداری از شبکه آبرسانی و مصرف انرژی تأسیسات، مؤثر واقع شود. با شناخت و آگاهی از این مهم، امکان تشکیل کمپین اطلاع‌رسانی با هدف تعديل نوسانات مصرف میسر می‌شود.

"We put a lot of effort into customer dialogue. As a result we know much more about their consumption patterns than a few years ago. A thorough analysis of this information is of particular value for optimising our drinking water supply systems. This way we can simulate distribution patterns and develop strategies for reducing costs, for example by optimising system pressure or limiting water losses."

Fereshte Sedehizade, senior engineer, responsible for coordinating water supply operations at Berliner Wasserbetriebe

در راستای برقراری ارتباط با مشترکین، تلاش‌های بسیار زیادی صورت گرفته است. در نتیجه شناخت ما در خصوص الگوی مصرف مشترکین نسبت به سال‌های گذشته ارتقا یافته است. تحلیل دقیق این اطلاعات، تأثیر بسزایی در بهبود سیستم‌های تأمین آب آشامیدنی دارد. از این رو می‌توانیم الگوی توزیع آب را شبیه‌سازی کرده و راهبردهایی از جمله بهینه‌سازی فشار در سیستم آبرسانی یا کاهش هدر رفت آب، جهت کاهش هزینه‌ها ارائه دهیم.

**خانم مهندس فرشته سده زاده
مسئول هماهنگی بهره‌برداری تأسیسات آبرسانی
Berliner Wasserbetriebe**

Applying DEMAPLAN®

DEMAPLAN® data collection is based on measurements, single site visits and interviewing households as well as additional information about households through occasional water use records. For this purpose proprietary inter3 measurement technology is installed in the households for 2-4 weeks. Households are interviewed using a standardised questionnaire and the extraction points are calibrated.

Getting started: Capacity building and public information campaigns

The successful implementation of DEMAPLAN® is based on the quality and precision of its results. Therefore employees who are involved in DEMAPLAN® need to be carefully selected and well trained. inter3 supervises you and your staff intensively in applying DEMAPLAN® and the associated measurement technology and thus guarantees the most detailed results.

Subsequently between 30 and 100 suitable households from your customer pool will be selected depending on the size of your supply area. Target oriented PR is necessary in order to inform your customers about the aims and results of the measurements. The customers that decide to cooperate will then be informed in detail about the next steps.

آغاز مطالعات اندازه‌گیری مصرف آب در شهر Herzberg کشور آلمان
Kicking off the water consumption measurements in Herzberg, Germany

اجرای DEMAPLAN®

داده‌های DEMAPLAN® بر اساس اندازه‌گیری‌ها، بازدیدهای میدانی و مصاحبه با مشترکین و همچنین اطلاعات تکمیلی به دست آمده در خصوص پیشنه مصرف، جمع‌آوری می‌شود. از این‌رو، فن‌آوری اندازه‌گیری inter3 به مدت ۲ تا ۴ هفته در منازل نصب می‌گردد. پرسشنامه‌های استاندارد توسط اعضای خانواده تکمیل شده و نقاط برداشت کالیبره می‌شود.

آغاز کردن با ظرفیت‌سازی و کمپین اطلاع‌رسانی عمومی

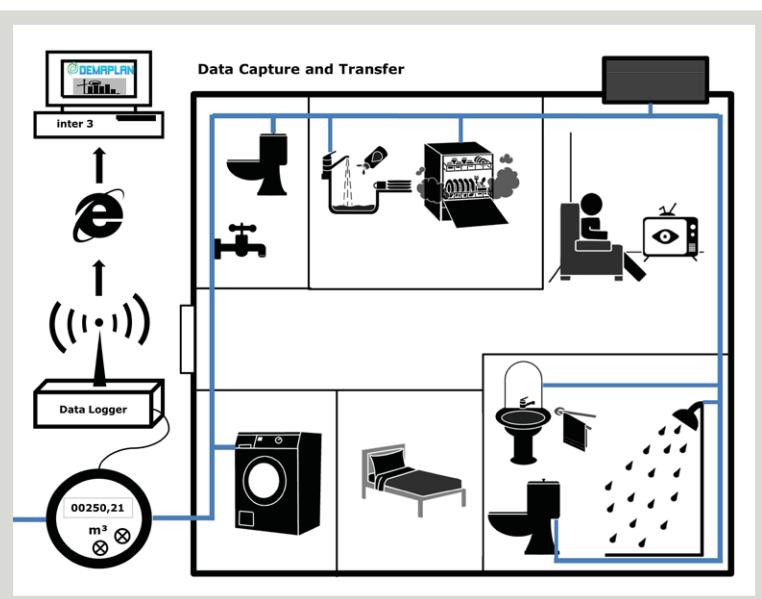
اجرای موفق DEMAPLAN® به کیفیت و دقت نتایج بستگی دارد. از این‌رو کارشناسان طرح DEMAPLAN® می‌بایستی با دقت، انتخاب و آموزش داده شوند. inter3 با آموزش و نظارت بر کارشناسان شرکت‌های آب و فاضلاب در اجرای DEMAPLAN® و فن‌آوری اندازه‌گیری‌های مرتبط، نتایجی دقیق را تضمین می‌نماید.

تعداد ۳۰ تا ۱۰۰ خانوار از جامعه مشترکین بر اساس وسعت منطقه تحت پوشش انتخاب می‌گردد. جهت اعلام اهداف و نتایج مطالعات مشترکین، برقراری روابط عمومی هدفمند الزامی است، پس از آن، مشترکینی که مایل به همکاری می‌باشند، از اقدامات بعدی مطلع می‌شوند.

DEMAPLAN® - مراسم اهدای جایزه روز آب سال ۲۰۱۵ در شهر Herzberg کشور آلمان
DEMAPLAN®-Award ceremony on the Water Day 2015 in the German city of Herzberg

DEMAPLAN® measurement technology and services

For the duration of the measuring inter 3's high resolution water meter is installed by the water supplier, replacing the standard existing water meter. The DEMAPLAN® data logger, with an integrated GSM modem, is connected to the water meter. The data logger records the water use data by the second and submits these in data packets via the internet to the DEMAPLAN® server.


After testing the technology's functionality the individual households are interviewed and their extraction points are calibrated. This requires a single site visit which takes between 30 and 60 minutes. The aim of the calibration is to get to know the extraction points and to record their water consumption patterns.

طی فرآیند اندازه‌گیری، کنتورهای بسیار دقیق 3 توسط شرکت آب و فاضلاب، جایگزین کنتورهای موجود می‌شود. هر کنتور آب جایگزین شده، مجهز به یک دیتالاگر® DEMAPLAN همراه با مودم جی اس ام (GSM-Modem) می‌باشد. دیتالاگر، اطلاعات مصرف آب را با تواتر زمانی بر حسب ثانیه ثبت کرده و این داده‌ها به صورت بسته‌های اطلاعاتی از طریق اینترنت به سرور DEMAPLAN® انتقال می‌یابد.

پس از آزمایش عملکرد تجهیزات فتی، پرسشنامه‌هایی جهت تکمیل، در اختیار مشترکین قرار داده شده و تمامی اجزای مصرف کالیبره می‌شوند. این امر مستلزم یک بار مراجعه به هر یک از منازل خواهد بود که هر بازدید به طور میانگین بین ۳۰ تا ۶۰ دقیقه به طول می‌انجامد. هدف از کالیبراسیون شناسایی تمامی اجزا و نقاط مصرف آب در منزل و ثبت الگوی مصرف آنها می‌باشد.

فن آوری و طرح مفهومی اندازه‌گیری
DEMAPLAN® Measurement Concept And Technology

DEMAPLAN® interviews and water diaries

During the visits the residents of the test households are interviewed. Apart from questions about the number, age and profession they are also asked about their routines with regards to water use. Even the best measurement technology can only provide good results if complementary information about the actual customers' behaviour is gathered. Mobilisation and cooperation of customers are therefore essential elements of DEMAPLAN®.

In addition to the interviews and measurements each household is asked to complete a water diary in note form. On the basis of these details the measuring results can be validated and harmonized with the actual water consumption. After the analysis the metering devices are de-installed and the records of the households are collected.

Data collected include calibration records, questionnaires, records of the households and usage records and are digitalised by the employees of the local water supplier using a template and transferred to inter3 for analysis.

مصاحبه‌ها و ثبت اطلاعات روزانه آب

افراد خانواده منتخب طی بازدیدهای میدانی مورد مصاحبه قرار می‌گیرند. علاوه بر پرسش‌هایی از قبیل تعداد اعضا خانواده، سن و شغل، از آنها در خصوص نحوه مصرف آب نیز سوال می‌شود. بهترین فن آوری اندازه‌گیری نیز تنها زمانی موفقیت‌آمیز خواهد بود که اطلاعات تکمیلی در خصوص رفتار مصرف‌کنندگان در اختیار باشد. از این رو، همکاری مشترکین از اساسی‌ترین عوامل اجرای DEMAPLAN® می‌باشد.

علاوه بر مصاحبه و اندازه‌گیری، از هر خانواده درخواست می‌گردد تا واقعی مصرف آب را در فرم‌های مخصوص ثبت نمایند. بر پایه این اطلاعات، نتایج اندازه‌گیری با میزان مصرف واقعی اعتبارسنجی شده و مطابقت داده می‌شود. پس از اتمام تحلیل‌های مورد نظر، تجهیزات اندازه‌گیری جمع‌آوری می‌شوند.

اطلاعات جمع‌آوری شده شامل، داده‌های کالیبره شده، پرسشنامه‌ها، اطلاعات مشترکین و پیشینه مصرف می‌باشد. این اطلاعات توسط کارمندان شرکت آب و فاضلاب رقومی‌سازی (دیجیتالیزه) شده و جهت تحلیل به موسسه inter 3 ارسال می‌شود.

Seven Steps to Success

- Selection of suitable and motivated employees from supply companies
- Training of personnel by inter3
- Selection of appropriate households for conducting measurements
- Implementation of PR concept
- Installation and test of the DEMAPLAN® measurement technology in these households
- Household site visits: Calibrating and interviewing households
- Digitalising and transferring collected data to inter3

هفت گام تا موفقیت

- انتخاب کارکنان شایسته و مشتاق از شرکت آب و فاضلاب برای همکاری؛
- آموزش کارکنان توسط اعضای تیم inter 3؛
- انتخاب منازل واحد شرایط برای انجام اندازه‌گیری‌ها؛
- اطلاع‌رسانی همگانی در جهت آشنایی با اهداف طرح؛
- نصب و آزمایش تجهیزات اندازه‌گیری در منازل DEMAPLAN®؛
- مراجعه به منازل برای انجام کالیبراسیون و تکمیل پرسشنامه از خانوارهای شرکت‌کننده در طرح؛
- دیجیتالیزه کردن اطلاعات برداشت شده و انتقال آنها به inter 3؛

مطالعه موردی کاشان

Case Study Kashan

Case study Kashan – Bringing DEMAPLAN® into practice

In 1393 (August 2014 to March 2015) inter 3 successfully applied a DEMAPLAN® study in Kashan. The aim of this study was to determine water consumption patterns in Kashan households using modern technology and concepts and to adjust these technologies to the specific conditions in Iran. For this showcase a sample of around 40 households was envisaged.

At the beginning of the project in August 2014 the individual work steps were presented, the specific requirements for successful implementation were discussed and the decision to proceed in Kashan was jointly agreed upon.

Custom-fit implementation strategies

Before we travelled to Iran the inter 3 team developed a questionnaire which was adapted to the specific conditions in Kashan. This questionnaire was supposed to help us analyse the results of the water consumption measurements. It involved mainly general household characteristics such as their size and the age of family members.

In addition we trained selected employees of the Kashan Water and Wastewater Company in installing and handling the DEMAPLAN® measurement technology. We also provided comprehensive information about the measuring procedure to all key project personnel and through public media to the customer.

مطالعه موردي کاشان- اجرايی کردن طرح DEMAPLAN®

در سال ۱۳۹۳ (شهریور تا اسفند) موسسه ۳ inter 3 مطالعات DEMAPLAN® را با موفقیت در شهر کاشان به اجرا رساند. هدف از این طرح، تعیین نحوه رفتار مصرفی خانوارهای شهر کاشان با به کارگیری فناوری مدرن و همچنین تطبیق دادن آن با شرایط ویژه ایران بود. برنامه ریزی‌ها به ترتیبی انجام گرفت تا این طرح به عنوان نمونه برای حدود ۴۰ خانوار منتخب مورد ارزیابی قرار گیرد.

در ابتدای پروژه در شهریور ۱۳۹۳ مراحل انجام کار تشریح شد. در خصوص درخواست‌ها و نیازهای ویژه برای انجام موفقیت‌آمیز طرح، مذاکرات و جلسات متعددی انجام شد و اجرای طرح در کاشان مورد توافق قرار گرفت.

جلسه آغاز به کار پروژه در شرکت آب و فاضلاب کاشان- شهریور ۱۳۹۳
Kick-off meeting at the Kashan Water and Wastewater Company in August 2014

راهبردهای اجرايی مناسب

قبل از حضور در ایران، پرسشنامه‌های مطابق با شرایط کاشان توسط ۳ inter 3 تهیه و تدوین شد تا با استفاده از آن، ارزیابی بهتری از نتایج اندازه‌گیری‌های مصرف آب حاصل شود. در این پرسشنامه سوالاتی در خصوص مشخصات عمومی خانوارها، نظیر تعداد و سن افراد خانواده مطرح شده بود.

ایجاد پایگاه داده و اعتمادسازی از طریق
ملاقات مشترکین در منزل
Create trust and a good database through
visiting customers at home

PR and strong customer relations

In order to convince customers to participate in the project they were called by employees of the Kashan Water and Waste-water Company customer service department. The willingness of the customers to participate surpassed our expectations: of all households that were contacted, amazingly more than 180 immediately declared their willingness to take part. This proved how important the previous information campaign had been. Willingness for demand-oriented strategy had also reached the customers in Kashan.

The trained employees in Kashan visited the 180 households straight after the telephone campaign. They checked if the necessary requirements, like the installation of high resolution water meters, were actually possible. The households were deemed suitable once the requirement criteria were established.

علاوه بر آن کارکنان منتخب شرکت آب و فاضلاب کاشان برای همکاری در خصوص پیادهسازی و نحوه کارکرد DEMAPLAN® تحت آموزش قرار گرفتند. در این راستا اطلاعات گسترهای در ارتباط با نحوه و دستورالعمل اندازه‌گیری‌ها به اشخاص کلیدی طرح و توسط رسانه‌های عمومی به مشترکین ارائه شد.

روابط عمومی و تعامل موثر با مشترکین

امور مشترکین شرکت آب و فاضلاب کاشان با مشترکین واحد شرایط ارتباط تلفنی برقرار کرد، تا آن‌ها را جهت همکاری در این طرح متقدعاً نماید. اعلام آمادگی مشترکین برای شرکت در پروژه فراتر از حد انتظار بود: بیش از ۱۸۰ مشترک که با آنها تماس تلفنی برقرار شده بود، آمادگی خود را جهت شرکت در طرح اعلام کردند. این موضوع نشان‌دهنده این مطلب است که تا چه اندازه اطلاع‌رسانی قبلی به عموم مردم تعیین‌کننده بوده و مشترکین را آماده پذیرش راهبرد تقاضا‌محور در شهر کاشان نموده است.

پس از ارتباط تلفنی، کارکنان آموزش دیده از ۱۸۰ مشترک بازدید نمودند. در این بازدیدها امکان نصب کنترلرهای آب با دقت بالا مورد بررسی قرار گرفت. در نهایت از میان ۱۸۰ داوطلب، مشترکینی انتخاب شدند که شرایط و پیش‌نیازهای لازم جهت انجام طرح را دارا بودند.

شناسنای بیشتر مشترکین و بالعکس از طریق DEMAPLAN®
Know your customers better with
DEMAPLAN® and vice versa!

Close and friendly relationships lead to better results

After the measurement technology had been successfully installed in the test households, the employees of the Kashan Water and Wastewater Company started the calibration under the supervision of inter 3 staff. To achieve this it was important to establish constant contact with the families in order to arrange regular visits. This leant itself to easy and relaxed access to the households which allowed a precise recording of the extraction points. Regular contact has a second advantage: a fiduciary relationship developed between the employees and the inhabitants of the test households in Kashan and made qualitative interviews in the form of friendly chats possible. In addition the willingness increased to answer the previously prepared questionnaires in a more reflective way.

ارتباط نزدیک و نتایج بهتر

پس از نصب موفقیت‌آمیز تجهیزات در خانه‌های مورد مطالعه، پرسنل اداره آب و فاضلاب کاشان با همکاری تیم شرکت 3 inter، اقدام به کالیبره کردن سیستم بر اساس دستورالعمل‌ها نمودند. یکی از فاکتورهای سیار مهم در این خصوص، حفظ ارتباط مستمر با مشترکین جهت انجام بازدیدها می‌باشد، چرا که از این طریق ورود به منازل با سهولت بیشتری صورت گرفته و امکان ثبت اندازه‌گیری‌های اجزای مصرف بطور دقیق میسر می‌گردد. مزیت دیگر ارتباط مستمر با مشترکین شرکت‌کننده در طرح، ایجاد اعتماد میان آن‌ها و پرسنل اداره آب و فاضلاب کاشان بود که از این طریق، امکان مصاحبه حضوری و دقیق با اعضای خانوار مهیا شد. به علاوه افزایش حس همکاری در مشترکین باعث شد که پاسخ به پرسشنامه‌های از پیش طراحی شده با دقت و احساس مسئولیت بیشتری صورت پذیرد.

نصب و کالیبراسیون فن‌آوری DEMAPLAN® در کاشان
Installation and calibration of DEMAPLAN® measurement technology in Kashan

Regular tests and evaluations speed up the work process

The first testing phase was a complete success which allowed us to carry out the necessary adjustments to DEMAPLAN® in Kashan. Based on the findings that there was a fluctuating power net and a partly unstable internet, it was possible to develop effective adjustment measures. Despite these external challenges precise results were obtained and new strategies were successfully established.

After adjusting the DEMAPLAN® technology the water consumption data of the customers were automatically measured, saved and transferred to the central server every day. The so-called 'calibration records' and the completed questionnaires were digitalised and submitted to inter3.

After 4 weeks the DEMAPLAN® technology was de-installed and prepared for the next round of measurements. Finalising the measurements and analysing the consumption data we prepared an individual report for every test household. inter3 and our colleagues from Kashan presented all the test households with a little gift.

اهدای هدایا
Delivering a gift

ناظارت بر انتقال اطلاعات به شرکت آب و فاضلاب
Monitoring of data transfer to the water supplier

تسريع فرآیند پروژه با انجام ارزیابی و آزمایش‌های منظم

انجام موفقیت‌آمیز آزمایشات اولیه منجر به اصلاحات لازم DEMAPLAN® با شرایط موجود کاشان شد. پس از آگاهی نسبت به وضعیت ناپایدار شبکه برق و عدم دسترسی دائمی به اینترنت، جهت تطبیق با شرایط مذکور، تغییرات مؤثری بر روی DEMAPLAN® صورت پذیرفت. با وجود چالش‌های خارجی، نتایج دقیق حاصل و راهبردهای جدید ارائه شد.

پس از اعمال تغییرات فنی بر روی DEMAPLAN® امکان اندازه‌گیری، ذخیره‌سازی و انتقال داده‌های مشترک‌کن بطور خودکار و روزانه به سرور فراهم گردید. فرم‌های کالیبراسیون به همراه پرسشنامه‌های تکمیل شده پس از دیجیتالیزه شدن به inter3 انتقال داده شد.

کلیه دستگاه‌ها و تجهیزات نصب شده پس از ۴ هفته جمع‌آوری شده و برای اندازه‌گیری‌های بعدی آماده شدند. پس از پایان اندازه‌گیری‌ها، گزارش مصرف هر مشترک بصورت اختصاصی تهیه و تدوین گردید. در پایان از کلیه خانوارهای مورد مطالعه با اهدای هدایای کوچک توسط inter3 و شرکت آب و فاضلاب کاشان تقدیر به عمل آمد.

Results of the Kashan case study

In close cooperation with our colleagues from Kashan, the water use of 53 households were measured and analysed in three steps. Due to technical issues or the frequent absence of the inhabitants, a total of 45 datasets were analysed. This led to important findings for the consumers as well as for the regional water management. Be it average or peak consumption analysis, consumption analysis of single households or entire districts: the main findings of the case study show that DEMAPLAN® can help gather, process and analyse valid data within a few weeks.

نتایج مطالعه موردنی شهر کاشان

با همکاری تنگاتنگ با شرکت آب و فاضلاب کاشان، میزان مصرف ۵۳ خانوار در ۳ مرحله اندازه‌گیری و تحلیل گردید. از این میان در نهایت ۴۵ سری داده مورد ارزیابی قرار گرفت که نتایج این ارزیابی‌ها منجر به استخراج اطلاعات ارزشمندی در خصوص مصرف برای شرکت آب و فاضلاب کاشان و نیز مشترکین شد. تحلیل متوسط یا حداقل مصرف، تحلیل مصرف یک خانوار یا کل تاچیه: مهمترین دستاوردهای مطالعه موردنی حاکی از آن است که DEMAPLAN® می‌تواند داده‌های معتبر را طی چند هفته جمع‌آوری، پردازش و تحلیل نماید.

اطلاعات کلی خانوارهای مورد مطالعه			
مرحله ۳	مرحله ۲	مرحله ۱	تاریخ انجام آزمایش
۱۳۹۳/۱۲/۱۶ - ۱۳۹۳/۱۱/۱۵	۱۳۹۳/۱۰/۱۲ - ۱۳۹۳/۹/۷	۱۳۹۳/۷/۱۱ - ۱۳۹۳/۶/۲۱	
۱۹	۱۹	۷	تعداد خانوار
۱۲۰ لیتر	۱۳۵ لیتر	۱۵۵ لیتر	سرانه مصرف روزانه
۳,۵	۳,۴	۴	متوسط تعداد ساکنین
%۲۳	%۲۲	%۴	درصد کودکان زیر ۱۲ سال

General data of the households assessed in Kashan				
Step 3	Step 2	Step 1		
15/11-16/12/1393	7/9-12/10/1393	21/6- 11/7/1393		Iranian calendar
19	19	7		Number of households
120 Litres	135 Litres	155 Litres		Daily water consumption per person
3,5	3,4	4		Average number of household inhabitants
23 %	22 %	4 %		Percentage of children under 12

Monthly variations of water consumption in Kashan

Diagram 1 describes the variations of the average water consumption in litres per day for three different times of measurement. Only the information on daily and monthly water uses allows water supply companies to analyse, for example, peaks in detail. In Step 1 the average consumption is around 620 litres (red line) and thus almost 1.5 times higher than the other measurement times of 450 and 420 litres respectively.

نوسانات مصرف ماهیانه در کاشان

نمودار ۱ بیانگر تغییرات متوسط مصرف آب بر حسب لیتر در روز، در سه بازه زمانی متفاوت می‌باشد. تنها اطلاعات مصرف روزانه و ماهانه به شرکت آب و فاضلاب، تحلیل حداقل مصارف را مقدور می‌سازد.

در مرحله ۱، متوسط مصرف روزانه با حدود ۶۲۰ لیتر (خط قرمز)، تقریباً ۱/۵ برابر میزان مشابه در سایر مراحل به ترتیب با ۴۵۰ و ۴۲۰ لیتر می‌باشد.

Identifying peaks

A critical value for the operation of water supply plants are the peaks in the supply area which only occur a few times a day but have to be fulfilled regardless. The average daily consumption increases and decreases constantly. If these days within a month are known and if it is possible to explain the reasons for these fluctuations, it will be possible to create an adjusted supply infrastructure which meets demand better and particularly more efficiently.

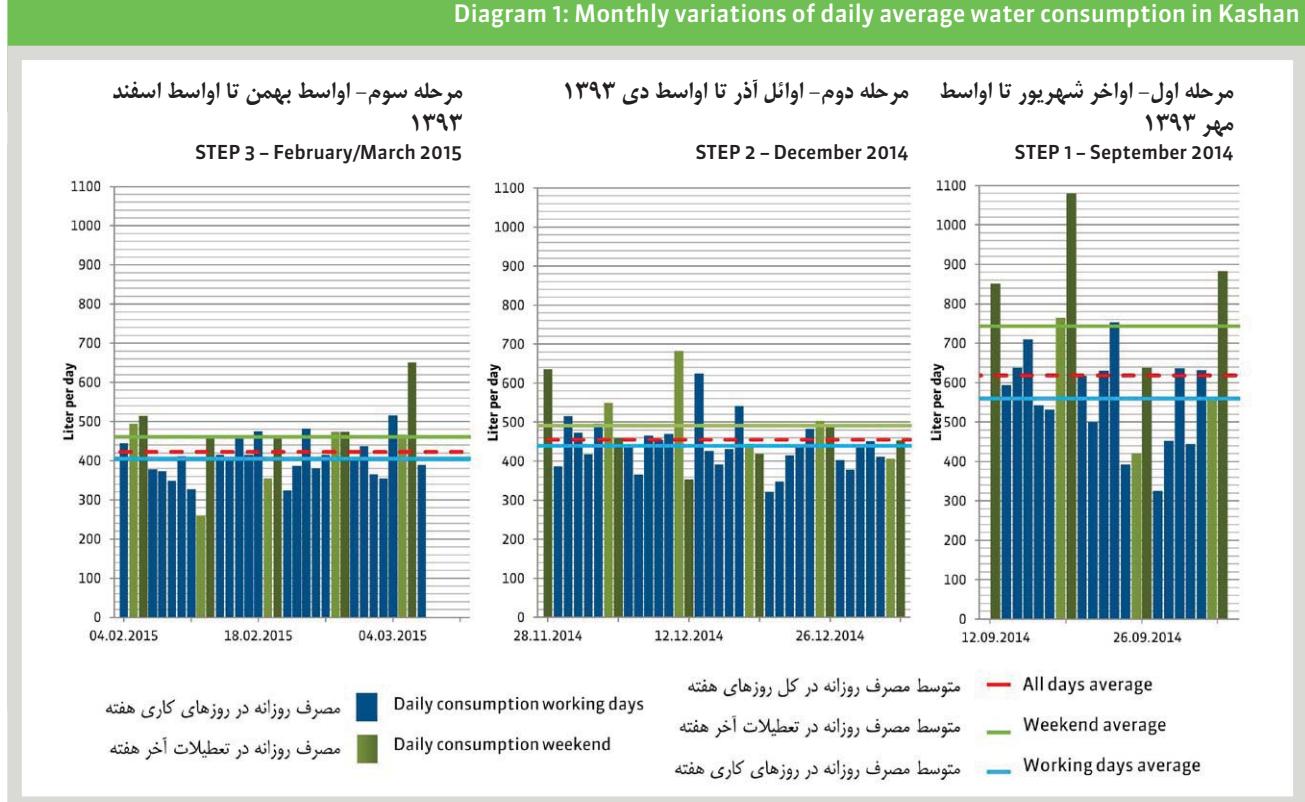
While the peak in Kashan in September reaches values of between 800 and 1000 litres, these values remain at less than 700 litres in winter months. It means that peaks in Kashan are around 1.5 times higher than on average days.

Looking at the average household consumption on weekends (green line) in the first stage it becomes obvious that water consumption of around 740 litres is about 32 percent higher than on work days (blue line).

The variance between average water use of households on weekends and work days decreases to about 11% in the winter.

شناسایی اوج مصرف

حداکثر مصارف که دفعات محدودی در روز اتفاق می‌افتد، نقطه بحرانی برای بهره‌برداری از تأسیسات آبرسانی می‌باشد. متوسط مصرف روزانه، بطور مداوم افزایش و کاهش می‌یابد. در صورتی که این روزها در ماه شناسایی و دلایل این نوسانات مشخص شود، می‌توان زیر ساخت‌های تأمین آب را به نحوی تنظیم نمود که نتیجه مؤثرتری برای تأمین آب حاصل شود.

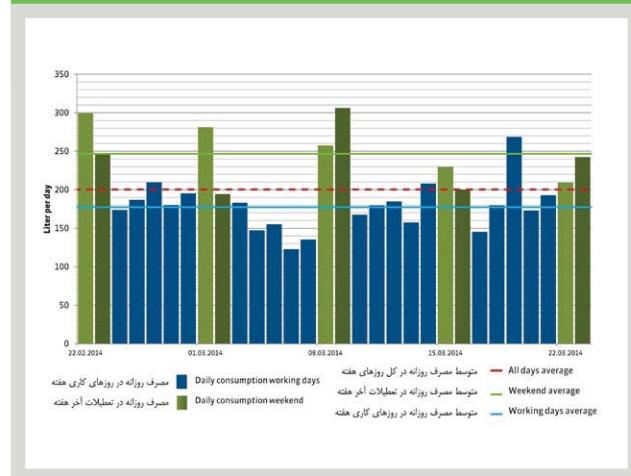

در حالیکه اوج مصرف در مرحله اول (واخر شهریور تا اواسط مهر) بین ۸۰۰ تا ۱۰۰۰ لیتر را نشان می‌دهد، این میزان در ماه‌های زمستان تا کمتر از ۷۰۰ لیتر در روز کاهش می‌یابد. به همین ترتیب حداکثر مصرف روزانه در شهر کاشان حدود ۱/۵ برابر بیشتر از متوسط میزان مصرف روزانه در این شهر می‌باشد.

با بررسی متوسط مصرف خانوارها در مرحله ۱ مشاهده می‌شود که میزان مصرف روزانه در تعطیلات آخر هفته (خط سبز) معادل ۷۴۰ لیتر، حدود ۳۲ درصد بالاتر از میزان مصرف در سایر روزهای کاری هفته (خط آبی) می‌باشد.

همچنین متوسط مصرف روزانه در تعطیلات آخر هفته نسبت به روزهای کاری هفته در زمستان، کاهش ۱۱ درصدی را نشان می‌دهد.

نمودار ۱: تغییرات ماهانه متوسط مصرف در روز در شهر کاشان

Diagram 1: Monthly variations of daily average water consumption in Kashan



The reason for the different results seems to be the changing temperature during the different times of measurement. If we compare these consumption values with the temperature sequences in diagram 2 the strong relationship between water consumption and temperature becomes apparent. While in the first stage the average daily water consumption per household at a temperature of 22-40°C is 620 litres, at a temperature between 4-18°C maximum it decreases to 420/450 litres respectively.

به نظر می‌رسد یکی از دلایل تفاوت در نتایج حاصله در مصارف ثبت شده، تغییرات دما در مراحل انجام آزمایشات می‌باشد. چنانچه میزان مصرف با تغییرات دما در نمودار ۲ مقایسه شود، تأثیر تغییرات دمای هوا بر روی میزان مصرف به وضوح مشهود خواهد بود. در حالیکه در مرحله اول متوسط مصرف روزانه هر خانوار در دمای ۲۲ تا ۴۰ درجه سلسیوس معادل ۶۲۰ لیتر می‌باشد، این مقدار در دمای ۴ تا ۱۸ درجه سلسیوس به ۴۵۰ تا ۴۲۰ لیتر کاهش می‌یابد.

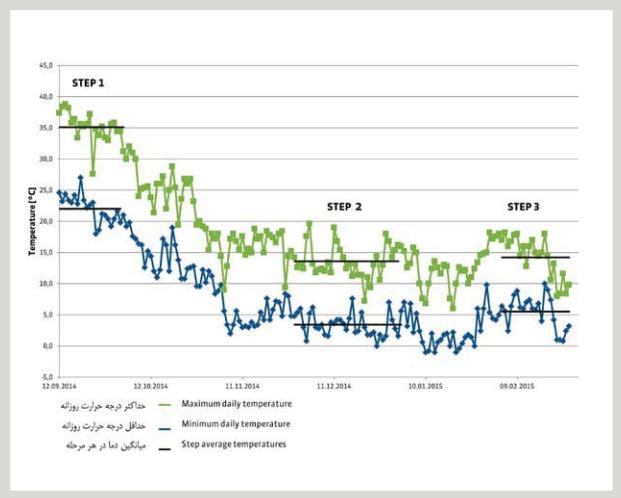

نمودار ۳: تغییرات ماهیانه مصرف شهری در آلمان:
بهمن و اسفند

Diagram 3: Monthly variations of a German city:
February/March

نمودار ۲: تغییرات دمای هوا حین اندازه‌گیری‌ها

Diagram 2: Temperature sequences
during measurements

Comparing knowledge about different cities

Diagram 3 shows the monthly variation of daily consumption of a city we analysed in Germany in winter. Contrary to Kashan there are clear peaks on weekends. The maximum water consumption of 300 litres is clearly lower than in Kashan. The variance of average daily water consumption between weekends and work days is at 36 percent, clearly higher than in Kashan with 11 percent.

مقایسه یافته‌ها در خصوص شهرهای مختلف

نمودار ۳ تغییرات ماهانه مصرف روزانه یکی از شهرهای مورد مطالعه در کشور آلمان را در دوره مشابه با مرحله سوم آزمایشات در شهر کاشان نشان می‌دهد. بر خلاف کاشان در این ناحیه تفاوت و حداکثر مصرف در آخر هفته قابل تشخیص است. بیشترین میزان مصرف با حدود ۳۰۰ لیتر در روز به طور واضح کمتر از میزان مشابه در شهر کاشان می‌باشد. نسبت متوسط میزان مصرف روزانه در روزهای آخر هفته به روزهای عادی ۳۶ درصد را نشان می‌دهد که این مقدار نسبت به شهر کاشان با حدود ۱۱ درصد اختلاف، بیشتر است.

Diurnal variations of water consumption

The average hourly per capita consumption was 6.5 litres between 06:00 and 00:00. During the week the average daily variations (blue line) exhibit a peak of about 8 litres per hour which is reached between 11:00 and 15:00. At weekends the average water consumption (green line) rises to 10 litres per hour.

In contrast to Kashan, the German city analysed by inter3 shows strong differences in the water consumption patterns on weekends compared to week days. The peak that has to be fulfilled is almost 10 litres per hour in both cases though.

تغییرات روزانه مصرف آب

متوسط سرانه مصرف روزانه در فاصله زمانی ساعت ۶ صبح تا ۲۴ با مداد، ۶/۵ لیتر در هر ساعت به ازای هر نفر محاسبه شده است. از بررسی متوسط مصرف در طول هفته (خط آبی)، این چنین نتیجه‌گیری می‌شود که حداقل مصرف با حدود ۸ لیتر در ساعت به طور متوسط، ما بین ساعت ۱۱ تا ۱۵ اتفاق می‌افتد. در تعطیلات آخر هفته متوسط مصرف (خط سبز) تا حدود ۱۰ لیتر در ساعت به ازای هر نفر افزایش می‌یابد.

برخلاف نتایج شهر کاشان، آنچه از مطالعات شرکت ۳ inter در آلمان حاصل شده، اختلاف قابل توجهی بین میزان مصرف در تعطیلات آخر هفته و روزهای عادی را نشان می‌دهد، ولیکن میزان حداقل مصرف در هر دو شهر تقریباً برابر ۱۰ لیتر در ساعت محاسبه شده است.

نمودار ۴: تغییرات روزانه مصرف آب در کاشان و شهری در آلمان

Diagram 4: Diurnal variations of water consumption of a German city and Kashan

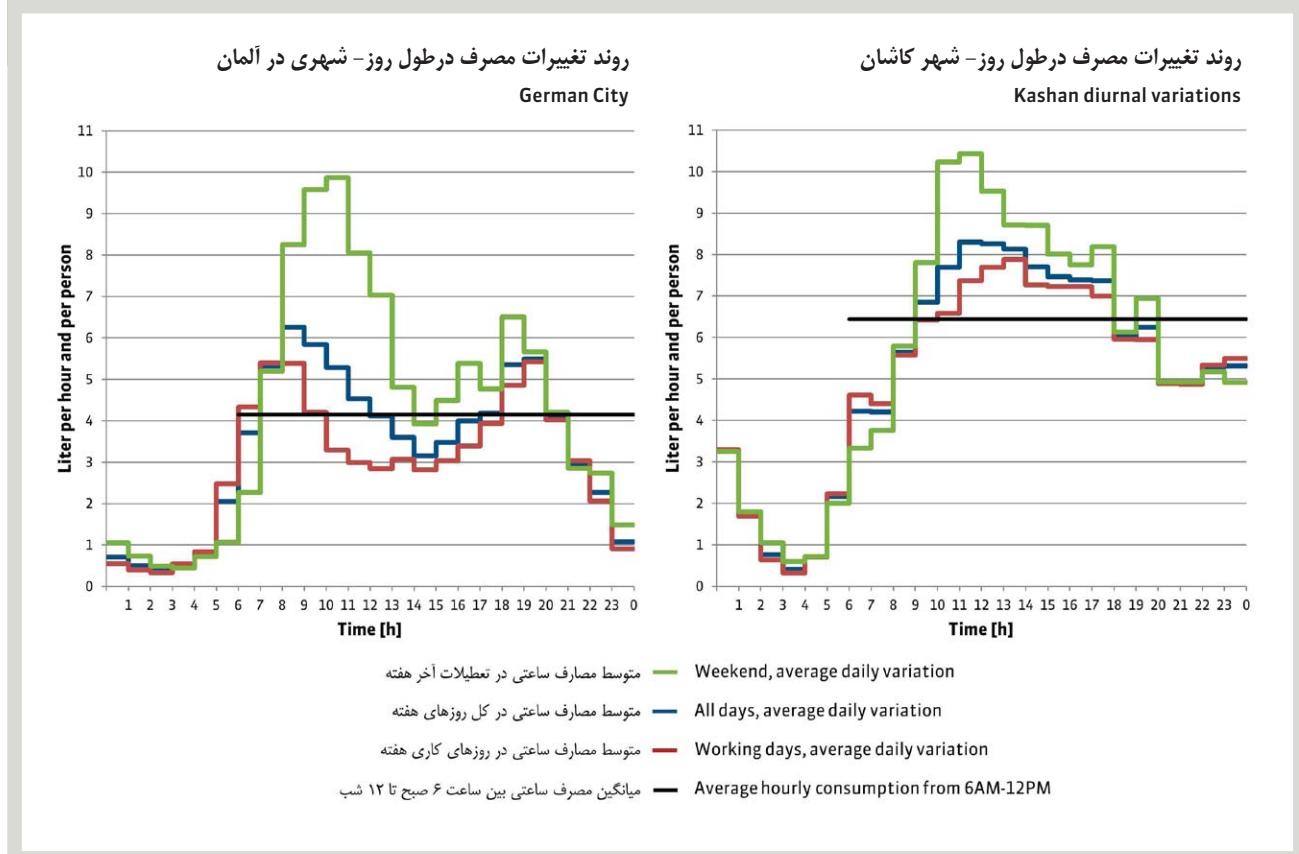


Diagram 5: Water consumption patterns of a German city and Kashan

Water consumption patterns

The differences in water consumption patterns of Kashan and a German City become visible in Diagram 5. The daily consumption in the bathroom in Kashan is 44 percent or 48 litres per person. This value includes water for showering and in parts also water consumption for use of washing clothes and personal hygiene on the toilet. In the kitchen around 37 percent or 41 litres per person are consumed per day. The share of the toilet flush is 14 percent or 16 litres per person per day and clearly less than the consumption for personal hygiene and in the kitchen. The washing machine only has a share of 5 percent of total consumption if it exists (around 20 percent of households do not own a washing machine).

Compared to an average water consumption pattern in a German city for the given categories, it becomes obvious that in a German city water consumption is also highest for personal hygiene in the bathroom but at 24 litres per person per day it is clearly less than in Kashan. The second highest category in a German city is the toilet flush at 21 litres followed by the washing machine at 12 litres per person per day. In the kitchen 10.4 litres of water are used per person per day, including the dishwasher.

الگوی مصرف آب

الگوی مصرف بین شهرهای کاشان و شهری در آلمان در نمودار ۵ مورد مقایسه قرار گرفته است. در شهر کاشان ۴۴ درصد از متوسط میزان مصرف روزانه که معادل ۴۸ لیتر برای هر نفر می‌باشد، به مصارف بهداشتی اختصاص یافته است. این مقدار علاوه بر استحمام، شامل مصارفی نظیر شست و شوی دستی لباس در حمام، دستشویی، روشویی و غیره نیز می‌باشد. روزانه به طور متوسط ۴۱ لیتر آب به ازای هر نفر در آشپزخانه مصرف می‌شود که این مقدار معادل ۳۷ درصد از کل مصرف روزانه است. میزان مصرف فلاش‌タンک با حدود ۱۶ لیتر به ازای هر نفر در روز که ۱۴ درصد از کل مصرف روزانه را شامل می‌شود، بعد از حمام و آشپزخانه با اختلاف قابل توجه در جایگاه سوم مصرف روزانه هر خانوار قرار دارد. در منازلی که ماشین لباسشویی وجود دارد، میزان مصرف آن ۵ درصد از کل میزان مصرف روزانه را به خود اختصاص داده است (تقریباً در ۲۰ درصد از منازل شرکت‌کنندگان در پروژه، ماشین لباسشویی اتوماتیک وجود نداشت).

مقایسه الگوی مصرف متوسط در مطالعه موردی شهری در آلمان با شهر کاشان، نشان می‌دهد که در آن شهر نیز مصارف بهداشتی و حمام با مقدار متوسط ۲۴ لیتر برای هر نفر، بیشترین سهم را از میزان مصرف روزانه به خود اختصاص داده است، که البته در مقایسه با شهر کاشان (۴۸ لیتر روزانه برای هر نفر) میزان مصرف کمتر می‌باشد. در موارد بعد، می‌توان دستشویی (فلاش‌تانک) و ماشین لباسشویی با مصارفی به ترتیب برابر ۲۱ و ۱۲ لیتر روزانه به ازای هر نفر، را عنوان کرد. در آشپزخانه روزانه به طور متوسط ۱۰/۵ لیتر آب به ازای هر نفر مصرف می‌شود (این مقدار شامل مصارف ماشین ظرفشویی نیز می‌باشد).

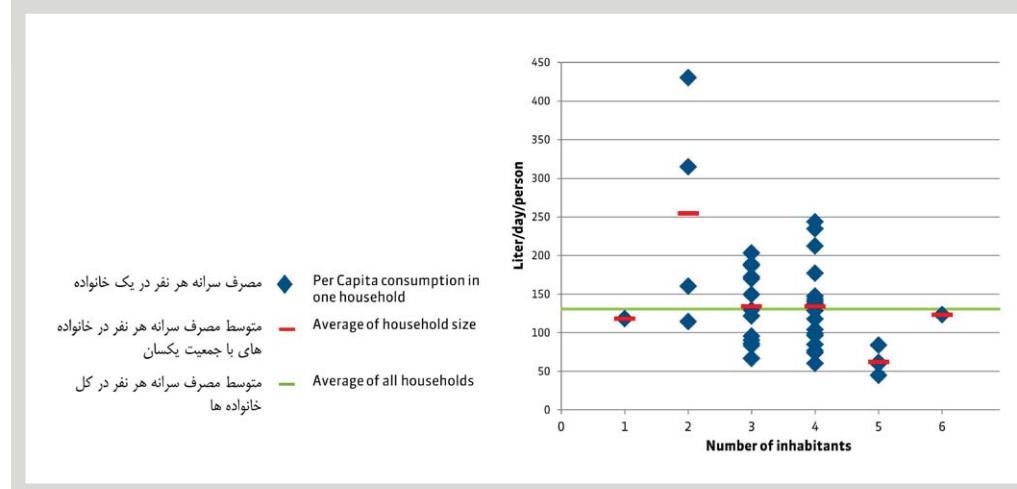
Comparing Kashan customers

The average daily per capita consumption in Kashan is 140 litres. The variance of the per capita consumption measured in the 45 households can be seen in the diagram 6. The variance shows an average value of around 50-430 litres per person per day. The variance of a two-person household is greatest. These households also have the highest average daily water consumption of around 250 litres per person. For the development of a water consumption strategy this means that the greatest potential for reducing water consumption of a city lies in two-people households and these should become the primary targets.

Another interesting target for a water consumption management strategy is four-person households. At 44 percent they represent the greatest share of assessed households. They also show a great variance of daily water consumption at around 50-250 litres per person.

Talks with households with minimal water consumption revealed that a strong environmental awareness within the family was the main influence for saving water. In these households however the standard of living was no different to the households that consumed 250 litres per person. Consequently there is great potential for reducing water consumption through a water consumption management strategy.

مقایسه مشترکین در کاشان


میزان مصرف متوسط سرانه در کاشان ۱۴۰ لیتر در روز می‌باشد. پراکنده‌گی متوسط مصرف سرانه ۴۵ خانوار در نمودار ۶ نشان داده شده است. میزان پراکنده‌گی متوسط مصرف بین ۵۰ تا ۴۳۰ لیتر به ازای هر نفر در روز قابل مشاهده است. همان‌گونه که در نمودار مشخص می‌باشد، میزان پراکنده‌گی در خانوارهای دو نفره بیشتر است. همچنین بالاترین میزان متوسط مصرف سرانه با حدود ۲۵۰ لیتر در روز، مربوط به خانواده‌های دو نفره است که تقریباً ۲ برابر متوسط مصرف سرانه کل را شامل می‌شود. جهت توسعه راهبردهای مصرف، اولویت اقدامات مورد نظر برای راهکارهای کاهش مصرف در خانواده‌های دو نفره حائز اهمیت می‌باشد.

همچنین خانواده‌های ۴ نفره نیز جهت توسعه استراتژی بسیار با اهمیت هستند، چرا که این خانوارها ۴۴ درصد کل مشترکین در پروژه را تشکیل داده و از این بیث بزرگ‌ترین گروه می‌باشند. میزان مصرف متوسط سرانه این خانوارها بین ۵۰ تا ۲۵۰ لیتر محاسبه شده است که نشان‌دهنده گستردگی پراکنده‌گی مصرف است.

در مصاحبه با مشترکین کم‌صرف، مشخص گردید که مهم‌ترین عامل مصرف پایین این افراد، آگاهی اعضاخانه نسبت به مسائل زیست‌محیطی می‌باشد. در عین حال کیفیت زندگی این خانوارها نسبت به خانوارهای پرمصرف پایین‌تر نبوده، لذا این عامل می‌تواند بصورت بالقوه جهت کاهش مصرف در راستای توسعه راهبرد مدیریت مصرف بکار گرفته شود.

نمودار ۶: مقایسه سرانه مصرف آب روزانه به ازای هر نفر بر اساس تعداد اعضای خانوار

Diagram 6: Comparison of average daily water consumption per person

What advice did DEMAPLAN® give the experts in Kashan?

In Kashan inter 3 analysed the water consumption of 45 households in 3 steps. The first investigation took place at the beginning of September. The second and third took place in winter. The daily water consumption of about 140 litres per person during the entire period was much lower than expected. The investigations revealed a strong dependency of water consumption on temperature, i.e. 155 litres per person per day at the end of summer and 135 and 120 litres per person per day in winter. This leads to the assumption that the average water consumption over the entire year is more than 140 litres per person per day.


The increase of peaks of 1.5 times the average daily water consumption is not particularly striking. In the interests of a more efficient operation of the technical plants a value of 1.2 is the target.

The increase of water consumption on weekends of up to 30 percent is also not a concern. It should be assumed that this value increases during the summer considerably since with rising temperatures the time people spend at home increases along with the use of air conditioning.

From the study two recommendations can be drawn which can in principle be transferred to other supply areas:

چه DEMAPLAN® رهنمودهایی را به کارشناسان در کاشان ارائه داد؟

میزان مصرف آب ۴۵ خانوار کاشانی توسط شرکت inter 3، در ۳ مرحله مورد مطالعه و بررسی قرار گرفت. اولین مرحله انجام آزمایشات و اندازه‌گیری‌ها در اواسط شهریور صورت پذیرفت و مراحل دوم و سوم در فصل زمستان اجرا شد. متوسط مصرف روزانه در شهر کاشان در دوره انجام آزمایشات، ۱۴۰ لیتر به ازای هر نفر، به مراتب پایین‌تر از حد انتظار بود. هم‌زمان می‌توان رابطه مستقیم تغییرات دما و اثر آن بر میزان مصرف را در نتایج این محاسبات مشاهده نمود (۱۵۵ در مرحله اول در پایان تابستان، ۱۳۵ و ۱۲۰ لیتر به ازای هر نفر در روز در فصل زمستان). به دلیل ارتباط مستقیم مصرف با تغییرات دما، میزان واقعی متوسط مصرف آب در طول سال بیش از ۱۴۰ لیتر در روز به ازای هر نفر پیش‌بینی می‌شود.

نمایی از شهر کاشان
City view of Kashan

تصمیم‌گیری بر اساس مطالعات جهت اجرا در کاشان

Making a decision on the measures to be implemented in Kashan

Information campaigns strengthen changes in mentality

The constantly occurring daily peaks between 11:00 and 15:00 are mainly caused by housewives. An information campaign about the effective use and implementation of new household devices would be a useful measure. Not only would the additional infrastructural load for water suppliers be reduced but also it would introduce a change of mentality with regards to the sustainable use of resources and future generations and companies would benefit.

Take new household structures into consideration

The results in Kashan also reveal that households with two people have a more than average daily water consumption at 250 litres per day per person. Taking into consideration the trend in Iran towards smaller households it can be assumed that this group will be targeted in particular in the future. By predicting new household structures, water and wastewater companies can redesign, implement and optimise their offers in time. This saves costs, generates revenue and increases profits.

افزایش ۱/۵ برابری حداکثر مصرف روزانه نسبت به متوسط مصرف، چشم‌گیر و قابل توجه نبوده و در صورت تمایل برای دستیابی به کارکرد بهینه تأسیسات تأمین و توزیع آب، توصیه می‌شود با راهکارهای مناسب، این مقدار به ۱/۲ تعدیل گردد.

افزایش مصرف در تعطیلات آخر هفته تا ۳۰ درصد نیز حائز اهمیت نمی‌باشد. با توجه به مدت زمان حضور در منزل و استفاده بیشتر از کولر در فصل تابستان، این مقدار افزایش چشم‌گیری خواهد داشت.

طی این مطالعات دو راهکار اساسی ارائه شده است که در سایر شرکت‌های آب و فاضلاب نیز مورد استفاده می‌باشد:

کمپین‌های اطلاع‌رسانی در جهت تغییر ذهنیت مشترکین

حداکثر مصرف آب در طول روز به طور پیوسته در بازه زمانی بین ساعت ۱۱ تا ۱۵ می‌باشد که توسط خانم‌های خانه‌دار مصرف می‌گردد. تشکیل کمپین‌های اطلاع‌رسانی جهت معرفی و ارائه راهکارهای مصرف صحیح و تعویض برخی لوازم و تأسیسات منزل گامی مؤثر در جهت بهینه‌سازی مصرف آب خواهد بود. بدین ترتیب نه تنها از بار اضافی بر تأسیسات زیربنایی تأمین آب کاسته شده است، بلکه خدمتی بزرگ در جهت مصرف پایدار منابع ارزشمند آب صورت پذیرفته، که نسل‌های آتی و شرکت‌های آب و فاضلاب از این مهم ذینفع خواهند بود.

نگاهی به ساختار جدید خانواده

نتایج مطالعات نشان می‌دهد که در شهر کاشان، متوسط میزان مصرف روزانه خانوارهای دو نفره با حدود ۲۵۰ لیتر به ازای هر نفر، به صورت مشخصی بالاتر از متوسط سرانه مصرف روزانه است. با توجه به گرایش خانواده‌های ایرانی به سمت کاهش جمعیت، این گروه در آینده باید به صورت ویژه مورد توجه قرار گیرند. با پیش‌بینی ساختار جدید خانواده، شرکت‌های آب و فاضلاب قادر خواهند بود که عرضه خدمات خود را به موقع مورد بازنگری و بهینه‌سازی قرار دهند. بدین ترتیب در هزینه‌ها صرفه‌جویی به عمل آمده، درآمدزایی و پیرو آن سود بالاتری حاصل می‌گردد.

سخن پایانی

غرفه DEMAPLAN® در روز آب، شهر Herzberg ۲۰۱۵ آلمان در سال ۲۰۱۵

DEMAPLAN® showcase at the Water Day 2015 in Herzberg, Germany

Epilogue

The projects in Germany and Iran have shown: DEMAPLAN® works.

DEMAPLAN® is a toolkit developed by inter 3 that combines the benefits of IT-based analyses and high-end measurement technologies with experiences of qualitative surveys. It is exactly this DEMAPLAN® combination that makes the difference.

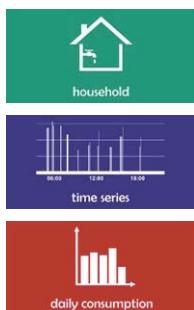
Experiences in Germany and Iran have shown that the willingness of customers to actively participate in measurements and to concern themselves with water consumption is greater than expected. Following this interest will benefit your business goals and your customers' welfare. Sustainability requires demand-oriented thinking on both sides – of the water supplier and the consumer. Modern consumption management does not only protect regional water resources but also our and our children's prosperity.

The DEMAPLAN® services are now available in its full-version or tailored to your demands.

طرحهای اجرا شده در آلمان و ایران نشان داد که اجرای DEMAPLAN® نتیجه‌بخش می‌باشد.

inter 3 ابزار طراحی شده توسط شرکت DEMAPLAN® است که ترکیبی از تحلیل‌های نرم‌افزاری و فن‌آوری اندازه‌گیری دقیق، با استفاده از نظرسنجی کیفی می‌باشد، که این ترکیب® DEMAPLAN® را متمایز ساخته است.

تجربه پیاده‌سازی این مطالعات در آلمان و ایران نشان داد که تمایل مشترکین به هم‌کاری در طرح و توجه آن‌ها به مصرف آب بیش از انتظار می‌باشد. با اجرای طرح علاوه بر ایجاد سود، رفاه مشترکین نیز تأمین می‌شود. اجرای مداوم این طرح مستلزم تفکر تفاضلی محور شرکت آب و فاضلاب و مشترکین می‌باشد. مدیریت مصرف مدرن، نه تنها باعث حفاظت منابع آب کشور شده، بلکه آینده فرزندان را نیز تأمین می‌نماید.


امروزه می‌توان خدمات DEMAPLAN® را بصورت کامل و یا مطابق با تقاضای مشترکین دریافت نمود.

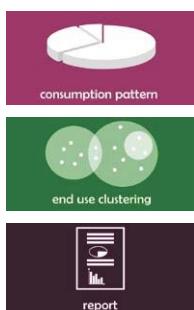
تیم inter 3 مشتاق به حمایت از شما در ایران می‌باشد.
The inter 3 team is happy to support you – in Iran and elsewhere

We are happy to advise you, for example, regarding these offers:

شرکت 3 inter تمايل دارد، شرکت‌های آب و فاضلاب را در موارد زير راهنمایي نماید.

Get to know your customers: Collect detailed water consumption information!

You would like to know who uses how much water at what time so you're able to act more efficiently in the future?


Apply DEMAPLAN® and create a demand-oriented strategy for optimising your water supply infrastructure and the water consumption of your customers using detailed water use information. inter 3 collects, processes and analyses your customer data.

Train your staff: Optimise your company's management strategies!

You want to train your staff in terms of modern management strategies to make supply structures and customer relations fit for the future?

Using DEMAPLAN® you create individual recommendations for optimising supply structures and customer relations, tailored to your company. inter 3 provides you with equipment and software that allows you to carry out your own data collection. Our on-site training guarantees that you have the necessary competencies for applying DEMAPLAN® successfully.

Enter into dialogue with your customers: Jointly develop efficient water use!

You need consumption-oriented solutions to avoid regional water stress and distribution conflicts?

Use DEMAPLAN® to enlighten the citizens of your region concerning efficient water use. inter 3 supports you in using information material and conceptualising and carrying out customer dialogues. This way you create a basis for changing consumption patterns that will lead to a better quality of life for everyone in the long run.

Think smart. Act sustainable.
Choose DEMAPLAN®.

شناخت مشترکین: جمع‌آوری اطلاعات دقيق مصرف آب

شناسایی این مهم که چه میزان آب در چه زمانی توسط چه کسی مصرف می‌شود تا امکان تصمیم‌گیری مؤثرتر فراهم آید.

با به کارگیری DEMAPLAN® و ارائه راهبرد تقاضا محور، امکان بهینه‌سازی زیرساخت‌های آبرسانی و مصرف مشترکین با استفاده از اطلاعات دقيق مصرف، مهیا می‌گردد. inter 3 اطلاعات مشترکین را جمع‌آوری، پردازش و تحلیل می‌نماید.

آموزش کارکنان: بهینه‌سازی راهبردهای مدیریتی شرکت آب و فاضلاب

آموزش کارکنان با استفاده از راهبردهای مدیریتی به منظور تأمین ساختار و ایجاد روابط آتی با مشترکین

با به کارگیری DEMAPLAN® پیشنهادات منحصر بفردی به منظور بهبود تأمین ساختار و ارتباط با مشترکین، متناسب با شرکت آب و فاضلاب ارائه می‌گردد. inter 3 تجهیزات و نرم‌افزار را جهت جمع‌آوری داده‌ها در اختیار شرکت‌های آب و فاضلاب قرار می‌دهد. آموزش‌های میدان 3 تضمینی بر اجرای صحیح و موفق DEMAPLAN® می‌باشد.

گفتگو و تعامل با مشترکین: توسعه مصرف بهینه آب

به منظور جلوگیری از تنش آبی منطقه‌ای و مضلات توزیع آب، راهکارهای مصرف محور می‌بایست تدوین شود.

با استفاده از DEMAPLAN® می‌توان آگاهی لازم را در شهرهوندان نسبت به مصرف بهینه آب، ایجاد نمود. inter 3 شرکت‌های آب و فاضلاب را جهت استفاده از داده‌ها، مفهومی‌سازی و ایجاد ارتباط با مشترکین، یاری می‌نماید. بدین ترتیب امکان ایجاد الگوهای مصرف متفاوت در راستای کیفیت بالاتر زندگی برای همگان فراهم می‌آید.

تفکر دقیق، عمل پایدار، انتخاب DEMAPLAN®

Published by:

inter3 Institute for Resource Management
Otto-Suhr-Allee 59
D-10585 Berlin

ناشر:

inter3 Institute for Resource Management
Otto-Suhr-Allee 59
D-10585 Berlin

Authors:

Dr. Shahrooz Mohajeri
Tamara Nuñez von Voigt

نویسندها:

Dr. Shahrooz Mohajeri
Tamara Nuñez von Voigt

Editors:

Helke Wendt-Schwarzburg
Noah Kruse

ویراستاران:

Helke Wendt-Schwarzburg
Noah Kruse

Graphic concept / layout:

böing gestaltung, Berlin

گرافیک و صفحه‌آرایی:

böing gestaltung, Berlin

English Editing:

Zak Seridian, Berlin

ترجمه و ویرایش انگلیسی:

Zak Seridian, Berlin

Farsi Translation:

Atieh Kohzad
Alireza Ghazizadeh

ترجمه و ویرایش فارسی:

عطیه کهزاد
علیرضا قاضیزاده

Contact persons DEMAPLAN®:**مسئول طرح DEMAPLAN®**

Dr. Shahrooz Mohajeri
Phone: +49(0)30 34 34 74 40
E-Mail: mohajeri@inter3.de

Dr. Shahrooz Mohajeri
Phone: +49(0)30 34 34 74 40
E-Mail: mohajeri@inter3.de

PAYAM PARS AB CO.
Mohammad Reza Pouriafar
Phone: +98 (0)21 88 35 95 20
E-Mail: pouriafar@payampsab.com

شرکت طرح و توسعه پیام پارس آب
محمد رضا پوریافر
تلفن: +(98) 21 88359520
ایمیل: pouriafar@payampsab.com

Picture Credits and Copyrights

All pictures, diagrams and graphics are copyrights of inter 3 GmbH except the following: front cover centre: Berliner Wasserbetriebe; p. 13: Rob Munro/www.stewartcomms.com; p.6 right: Jasmin Merdan by Fotolia; front cover left & right; back left & right; p. 10; p. 12: p2mberlin GmbH; p. 2: Young Cities

This brochure is based on the results of the research projects "DEMAPLAN" (reference code 02WQ1287A-B) and "IWRM Isfahan" (reference code 02WM1177) funded by the German Federal Ministry of Education and Research (BMBF). The authors are responsible for the content of this publication.

حق کپیرایت inter 3 GmbH
استفاده شده در گزارش را به استثنای موارد زیر محفوظ می‌دارد:
تصویر روی جلد: صفحه ۱۳: Berliner Wasserbetriebe
تصویر روی جلد: صفحه ۶: Rob Munro/www.stewartcomms.com
تصویر روی جلد: صفحه ۱۰: Jasmin Merdan by Fotolia
تصویر روی جلد: صفحه ۱۲: Young Cities
تصویر روی جلد: صفحه ۱۰: p2mberlin GmbH

این بروشور بر اساس نتایج تحقیقات طرح "DEMAPLAN" (کد 02WQ1287A-B) و "IWRM Isfahan" (کد 02WM1177) با حمایت مالی وزارت آموزش و تحقیقات فدرال آلمان (BMBF) تهیه شده است.
نویسندها مسئولیت تمامی مطالب درج شده را بر عهده دارند.

inter 3 Institute for
Resource Management GmbH
Dr. Shahrooz Mohajeri
Phone: +49(0)30 34 34 74 40
E-Mail: mohajeri@inter3.de
www.inter3.de

inter 3 Institute for
Resource Management GmbH
Dr. Shahrooz Mohajeri
Phone: +49(0)30 34 34 74 40
E-Mail: mohajeri@inter3.de
www.inter3.de

PAYAM PARS AB CO.
Mohammad Reza Pouriafar
Phone: +98 (0)21 88 35 95 20
E-Mail: pouriafar@payamparsab.com
www.payamparsab.com

شركة طرح و توسيعه پيام پارس آب
محمد رضا پوریافر
تلفن: +(۹۸) ۲۱ ۸۸۳۵۹۵۲۰
ایمیل: pouriafar@payamparsab.com
www.payamparsab.com

SPONSORED BY THE

Federal Ministry
of Education
and Research